Potential impact and cost-effectiveness analysis of rotavirus vaccine introduction in Afghanistan

Dr. Palwasha Anwari
National Immunization Technical Advisory Group of Afghanistan

12th African Rotavirus Symposium
Johannesburg, South Africa
Outline

• Introduction
• Study objectives
• Methods
• Results
• Conclusion
Introduction

• Rotavirus is the leading cause of severe diarrhea among children worldwide and is responsible for more than one-third of all childhood diarrhea deaths.

• The Eastern Mediterranean Region (EMRO) sees around 100,000 child deaths due to diarrhea and 13,000 due to rotavirus yearly.

• As of July 2019, 98 countries worldwide have introduced rotavirus vaccination.

• In 2013, Afghanistan was among the top 10 countries with the greatest number of rotavirus deaths among children under 5 globally.¹

Introduction: Rotavirus burden in Afghanistan

| Estimated outcomes related to rotavirus in children aged 1-59 months during one year (without vaccination)-2017 |
|---|--|
| Cases | 497,999 |
| Outpatient visits | 269,898 |
| Hospital admissions | 20,069 |
| Deaths | 4,880 |
| Total health service costs to government/society| US$ 5.6 million / US$12 million |
Introduction: Study background

- Discussions around conducting this cost-effectiveness analysis were concomitant to discussions about Afghanistan applying to Gavi for rotavirus vaccine support.
- The study was first published in 2017 in *Vaccine*.

Study authors:
Palwasha Anwari (Afghanistan NITAG)
Frederic Debellut (PATH)
Clint Pecenka (PATH)
Sardar M. Parwiz (Ministry of Public Health)
Andrew Clark (LSHTM)
Devin Groman (PATH)
Najibullah Safi (Ministry of Public Health)
Study Objectives

- Evaluate the **impact and cost-effectiveness** of introduction of rotavirus vaccine into Afghanistan’s National Immunization Program (NIP).
- Develop and consolidate the evidence base to support a **decision about introduction** of rotavirus vaccine into NIP.
- Provide evidence for the **government to support** and **commit** to the vaccine program (co-financing).
Methods

• We examined the use of ROTARIX (RV1) administered orally with a two-dose schedule at 6 and 10 weeks of age.

• The analysis used the ProVac Initiative’s UNIVAC model (version 1.2.09), an Excel-based static cohort model developed at the London School of Hygiene and Tropical Medicine based on prior economic tools developed for PAHO’s ProVac initiative and used widely in the America’s and beyond since 2006.
Methods: Two scenarios

Without vaccination

- Pop
- Cases
- Deaths
- Visits
- Hosp.

Rates per 100,000 per yr
- DALYs
- $ Visits
- $ Hosp.

With vaccination

- Pop
- Cases
- Deaths
- Visits
- Hosp.

Rates per 100,000 per yr
- DALYs
- $ Visits
- $ Hosp.
Methods: Model parameters and study inputs

• Study population: Children 1-59 months of age
• Analyzed for 10 cohorts, starting in 2017 through 2026
• Used demographic data from UN population division, 2015 revision
• Analyzed from both governmental perspective and societal perspective
• Examined both severe rotavirus gastroenteritis (RVGE) and non-severe RVGE cases
• Disease incidence based on a mix of global and local data including information from Afghanistan rotavirus surveillance (2013-2015)
Methods: Model parameters and study inputs

• Vaccine efficacy: 53% after two doses
• Vaccine coverage: 77.3% for dose 1 (70.5% for dose 2) in year of introduction, with assumption to reach 90% coverage by end of 2020
• Vaccine price per dose: US$2.02 and US$0.20 (co-financing)
• Discount rate: 3% annual
• All monetary units were adjusted to 2017 US$
Results

Changes in outcomes with rotavirus vaccine introduction (10 cohorts)

<table>
<thead>
<tr>
<th></th>
<th>No vaccine</th>
<th>With vaccine</th>
<th>Averted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discounted Health Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>5,045,332</td>
<td>3,824,319</td>
<td>1,221,013</td>
</tr>
<tr>
<td>Outpatient visits</td>
<td>2,734,395</td>
<td>2,072,648</td>
<td>661,746</td>
</tr>
<tr>
<td>Hospitalizations</td>
<td>203,327</td>
<td>154,120</td>
<td>49,207</td>
</tr>
<tr>
<td>Deaths</td>
<td>49,444</td>
<td>37,478</td>
<td>11,966</td>
</tr>
<tr>
<td>DALYs</td>
<td></td>
<td></td>
<td>756,264</td>
</tr>
</tbody>
</table>

Discounted Economic Outcomes	US$4,085,537	US$3,104,902	US$980,635
Outpatient visits (Government perspective)			
Outpatient visits (Societal perspective)	US$8,764,901	US$6,661,097	US$2,103,805
Hospitalizations (Government perspective)	US$1,554,307	US$1,181,233	US$373,074
Hospitalizations (Societal perspective)	US$2,815,416	US$2,139,643	US$675,773
Results: Incremental cost-effectiveness ratio

\[ICER = \frac{\text{Cost with vaccine} - \text{Cost without vaccine}}{\text{Outcome with vaccine} - \text{Outcome without vaccine}} \]

- **From the government perspective, ICER = US$82 per DALY averted**

 \[
 \begin{array}{c|c|c}
 & \text{Vaccine programme costs} & \text{Healthcare costs averted} \\
 \hline
 \text{US$82} & 55,008,967 & 651,283 \\
 \hline
 \end{array}
 \]

 \[
 \frac{55,008,967}{651,283} = 82 \text{ DALYs averted}
 \]

- **From the societal perspective, ICER = US$80 per DALY averted**

 \[
 \begin{array}{c|c|c}
 & \text{Vaccine programme costs} & \text{Healthcare costs averted} \\
 \hline
 \text{US$80} & 55,008,967 & 2,779,578 \\
 \hline
 \end{array}
 \]

 \[
 \frac{55,008,967}{651,283} = 80 \text{ DALYs averted}
 \]

ICER = 0.14 share of Afghanistan’s GDP
Results: Cost per DALY averted for all scenarios

- Base case (most probable) scenario: $	ext{Govt perspective} = 82$, $	ext{Society perspective} = 80$
- Base case accounting for Gavi subsidy: $	ext{Govt perspective} = 31$, $	ext{Society perspective} = 29$
- Higher burden of disease, Gavi subsidy: $	ext{Govt perspective} = 27$, $	ext{Society perspective} = 25$
- Lower coverage rates, Gavi subsidy: $	ext{Govt perspective} = 31$, $	ext{Society perspective} = 29$
- Low burden of disease and high vaccine delivery costs, Gavi subsidy: $	ext{Govt perspective} = 203$, $	ext{Society perspective} = 196$
- Low burden of disease and high vaccine delivery costs, No Gavi subsidy: $	ext{Govt perspective} = 380$, $	ext{Society perspective} = 373$

Threshold 1 x GDP p.c.
Conclusion

• Introduction of rotavirus vaccination in Afghanistan is likely to be highly cost-effective.

• Rotavirus vaccine can avert a substantial health and economic burden linked to rotavirus disease in Afghanistan.

• A rotavirus vaccination program is estimated to cost **US$2.2 million** per year on average accounting for Gavi support or **US$5.5 million** without Gavi support.

• Rotavirus vaccination program cost would represent **2.8%** of the total immunization budget expected in 2017 or **0.1%** of Afghanistan’s total health expenditures.
Conclusion

• This study played an important role in justifying Afghanistan’s decision to introduce rotavirus vaccination.

• Afghanistan started introducing rotavirus vaccine nationally in January 2018.

• In 2018, after introduction of vaccine, the country established a hospital-based surveillance system to measure rotavirus vaccine impact and effectiveness.

• As of today more than 2,500 cases of acute severe diarrhea disease among children under 5 enrolled

• Vaccination card reviewed for 93%

Afghanistan Minister of Public Health H.E. Dr. Ferozuddin Feroz delivers the first dose of rotavirus vaccine to a child at the launch ceremony. Photo: WHO/EMRO
Conflict of interest statement:
The authors have no conflicts to declare.
For more information, contact Palwasha Anwari at anwari222@gmail.com.

Any questions?