Safety and immunogenicity of a parenteral P2-VP8 subunit rotavirus vaccine

M. J. Groome, L. Fairlie, J. Morrison, A. Fix, A. Koen, M. Masenya, N. Page, L. Jose, S.A. Madhi, M. McNeal, L. Dally, I. Cho, M. Power, J. Flores, S. Cryz

Dr Lee Fairlie
MBChB (UCT), FCPaeds (SA), MMED Paediatrics (Wits)
Wits Reproductive Health and HIV Institute

Dr Michelle Groome
MBBCh (Wits), DCH (SA), MSc Med (Epi & Biostats), PhD (Wits)
MRC: Respiratory and Meningeal Pathogens Research Unit

12th African Rotavirus Symposium, Johannesburg, July 30-August 1 2019
Rationale for non-replicating rotavirus vaccine (NRRV)

Oral rotavirus vaccines

- interference by high levels of transplacentally-acquired maternal rotavirus antibodies
- rotavirus antibodies in breast-milk
- co-administration of oral polio vaccine
- micronutrient deficiency
- enteric co-infections and microbiome
- concurrent diseases e.g. HIV infection
- host genetics

NRRVs

- bypass the need for intestinal replication
- may provide enhanced efficacy
- safety benefit - no increased risk of intussusception
- produced at low cost
- combination with other childhood vaccines
- safe in children with severe immunodeficiency
P2-VP8 rotavirus vaccine

» Developed at US NIH.
» Truncated VP8 subunit protein from human Wa strain (G1P[8]) fused to the tetanus toxin P2 epitope:
 > Expressed in E. coli
» Liquid formulation, adsorbed onto aluminum hydroxide adjuvant, administered intramuscularly.

Schematic diagram of rotavirus VP4 protein
Vaccine development

Pre-clinical development

Clinical development

First in human
Adults 18–45 yrs
Baltimore
Dec 2012–Oct 2013

VAC 013
Phase I/II
Toddlers and infants
Soweto, South Africa
Mar 2014–Oct 2015

- Safe and well tolerated
- Reduced viral shedding following Rotarix

VAC 041
Phase I/II
Adults, toddlers and infants
3 sites, Soweto, South Africa
Feb 2016–Dec 2017

P2-VP8-P[4],P[6],P[8]

Fix, Vaccine, 2015; Groome, Lancet ID, 2017
VAC 041 – trivalent P2-VP8 vaccine

» Trivalent vaccine, including P[4], P[6], and P[8] antigens (DS-1, 1076 and Wa).

» Dose 5µg to 30µg per serotype (15 to 90µg total antigen) - lack of a clear dose-response in previous study.

» Double-blind, randomized, placebo-controlled, descending-age, dose-escalation study to evaluate safety, tolerability and immunogenicity in adults, toddlers, and infants.

Respiratory and Meningeal Pathogens Research Unit (National PI/Site PI - Dr Michelle Groome)

Family Clinical Research Unit (FAM-CRU) (Site PI - Dr Julie Morrison)

Shandukani Research Centre (Site PI - Dr Lee Fairlie)
<table>
<thead>
<tr>
<th>Group</th>
<th>TV P2-VP8 Dose</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Adult</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>30 µg</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>3</td>
</tr>
<tr>
<td>A2</td>
<td>90 µg</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>3</td>
</tr>
<tr>
<td>A Total</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>B Toddler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>30 µg</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>3</td>
</tr>
<tr>
<td>B2</td>
<td>90 µg</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>3</td>
</tr>
<tr>
<td>B Total</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>C Infant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>15 µg</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>4</td>
</tr>
<tr>
<td>C2</td>
<td>30 µg</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>4</td>
</tr>
<tr>
<td>C3</td>
<td>90 µg</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>4</td>
</tr>
<tr>
<td>C Total</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>D Infant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 µg</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>30 µg</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>90 µg</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>138</td>
</tr>
<tr>
<td>D Total</td>
<td></td>
<td>552</td>
</tr>
</tbody>
</table>
- Cohorts A, B, C – Day 7 safety bloods collected
- Safety visits on day 7 post vaccination for Cohort A and days 3 and 7 for Cohorts B, C, D

Faecal shedding of Rotarix assessed during the week after the first dose – stool samples collected on day 5, 7 and 9 – subset at RMPRU only.
Objectives

» Primary Objectives:
 > Safety
 To evaluate the safety and tolerability of the trivalent P2-VP8 subunit rotavirus vaccine at escalating dose levels in healthy South African adults, toddlers and infants
 > Immunogenicity
 To evaluate the immunogenicity of the trivalent P2-VP8 subunit rotavirus vaccine at different dose levels in healthy South African infants

» Exploratory Objective:
 > Efficacy
 To evaluate the impact of the trivalent P2-VP8 subunit rotavirus vaccination on shedding of Rotarix subsequently administered in healthy South African infants (subset)
Primary safety endpoints

> Number of adverse events and serious adverse events through 28 days after the last study injection

> Number of vaccine-induced reactions within 7 days after each injection

 • Local - injection site pain/tenderness, redness, swelling, itching, local lymphadenopathy
 • Systemic - fever, vomiting, nausea, fatigue, chills and myalgia for adults; fever, vomiting, irritability, decreased activity, and decreased appetite for toddlers and infants

Note:

> Progression from adults, toddlers to infants and for dose escalation: Safety Review Committee evaluated clinical and laboratory safety data through 7 days after the 1st injection.

> DSMB oversight.
Primary immunogenicity endpoints

» IgG to P2-VP8 vaccine antigens
 > Three assays, one for each antigen – P[4], P[6] and P[8]
 > 4-fold rise in titer from baseline to 28 days after the 3rd vaccination
 > Results both unadjusted and adjusted for maternal antibody

» IgA to P2-VP8 vaccine antigens
 > Three assays, one for each antigen – P[4], P[6] and P[8]
 > 4-fold rise in titer from baseline to 28 days after the 3rd vaccination

» Neutralizing antibodies to the strains from which vaccine antigens derived
 > Assay strains – DS-1 (P[4]), 1076 (P[6]) and Wa (P[8])
 > 2.7-fold rise in titer from baseline to 28 days after the 3rd vaccination
 > Results both unadjusted and adjusted for maternal antibody
Cohort A: 30 adults (15 per cohort; safety analysis)
Cohort B: 30 toddlers (15 per cohort; safety analysis)
Cohort C and D:

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>15 µg</th>
<th>30 µg</th>
<th>90 µg</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized</td>
<td>139</td>
<td>140</td>
<td>140</td>
<td>139</td>
<td>558</td>
</tr>
<tr>
<td>Vaccinated</td>
<td>139</td>
<td>139</td>
<td>140</td>
<td>139</td>
<td>557</td>
</tr>
<tr>
<td>Completed Day 84 visit</td>
<td>133 (96%)</td>
<td>134 (96%)</td>
<td>134 (96%)</td>
<td>135 (97%)</td>
<td>536 (96%)</td>
</tr>
<tr>
<td>Day 84 blood collected/analyzed</td>
<td>130 (94%)</td>
<td>133 (95%)</td>
<td>133 (95%)</td>
<td>134 (96%)</td>
<td>530 (95%)</td>
</tr>
<tr>
<td>PP immune population</td>
<td>130 (94%)</td>
<td>132 (94%)</td>
<td>132 (94%)</td>
<td>134 (96%)</td>
<td>528 (95%)</td>
</tr>
</tbody>
</table>
Safety

No statistically significant differences observed between the treatment groups in the proportions of participants with local reactions, systemic reactions or unsolicited adverse events: all cohorts

<table>
<thead>
<tr>
<th>Infants</th>
<th>Placebo n (%)</th>
<th>15µg n (%)</th>
<th>30µg n (%)</th>
<th>90µg n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any local reaction (Grade 2 or higher)</td>
<td>9 (6.5)</td>
<td>19 (13.7)</td>
<td>13 (9.3)</td>
<td>16 (11.5)</td>
</tr>
<tr>
<td>Any systemic reaction (Grade 2 or higher)</td>
<td>30 (21.6)</td>
<td>44 (31.7)</td>
<td>30 (21.4)</td>
<td>42 (30.2)</td>
</tr>
<tr>
<td>Any unsolicited AE (Grade 2 or higher)</td>
<td>19 (13.7)</td>
<td>24 (17.3)</td>
<td>18 (12.9)</td>
<td>20 (14.4)</td>
</tr>
<tr>
<td>Any SAE</td>
<td>8 (5.8)</td>
<td>13 (9.4)</td>
<td>6 (4.3)</td>
<td>8 (5.8)</td>
</tr>
<tr>
<td>Any AE related to product</td>
<td>3 (2.2)</td>
<td>2 (1.4)</td>
<td>3 (2.1)</td>
<td>2 (1.4)</td>
</tr>
</tbody>
</table>
Immunogenicity
(Per Protocol Population)
Anti-P2-VP8 IgG in infants

- **P[4]**
- **P[6]**
- **P[8]**

Unadjusted for decrease in maternal antibodies

Seroresponses for all 3 antigens (adjusted for maternal antibodies)
Anti-P2-VP8 IgA titers in infants

Seroresponses for all 3 antigens
Serum anti-P2-VP8 IgA and IgG seroresponses for all 3 antigens in adults and toddlers

Adults

<table>
<thead>
<tr>
<th></th>
<th>IgA</th>
<th></th>
<th></th>
<th>IgG</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td></td>
<td>30µg</td>
<td></td>
<td>90µg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 28</td>
<td></td>
<td>Day 56</td>
<td></td>
<td>Day 84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Toddlers

<table>
<thead>
<tr>
<th></th>
<th>IgA</th>
<th></th>
<th></th>
<th>IgG</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td></td>
<td>30µg</td>
<td></td>
<td>90µg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 28</td>
<td></td>
<td>Day 56</td>
<td></td>
<td>Day 84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Serum Neutralizing Antibodies to Wa in infants

Neutralizing Antibodies to Wa in Infants - GMT and 95% CI Per-Protocol Population, unadjusted for decrease in maternal antibodies

Neutralizing antibody seroresponse against Rotavirus Strain Wa in Infants - Per-Protocol Population Adjusted for decay in maternal antibodies
Serum Neutralizing Antibodies to DS-1 in infants

Neutralizing Antibodies to DS-1 in Infants - GMT) and 95% CI Per-Protocol Population, unadjusted for decrease in maternal antibodies

Neutralizing antibody seroresponse against Rotavirus Strain DS-1 in Infants - Per-Protocol Population
Adjusted for decay in maternal antibodies
Serum Neutralizing Antibodies to 1076 in infants

Neutralizing Antibodies to 1076 in Infants - GMT) and 95% CI Per-Protocol Population, unadjusted for decrease in maternal antibodies

Neutralizing antibody seroresponse against Rotavirus Strain 1076 in Infants - Per-Protocol Population Adjusted for decay in maternal antibodies
Rotavirus shedding post-Rotarix - infants

» Proportion of infants shedding rotavirus (ELISA) 5, 7 or 9 days after administration of the first dose of Rotarix® (4 weeks after the 3rd P2-VP8/placebo injection).

» Subset – infants at RMPRU:

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>15 µg</th>
<th>30 µg</th>
<th>90 µg</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>53</td>
<td>52</td>
<td>56</td>
<td>56</td>
<td>217</td>
</tr>
</tbody>
</table>

Reduction compared to placebo (any of the three days):
- 15µg: 10% (95% CI: -36-40)
- 30µg: 27% (-14-53)
- 90µg: 42% (4-65)
Conclusions

» All dose-levels well tolerated and no safety signals.
» Excellent anti-P2-VP8 IgG across the three vaccine P-types.
» Very good neutralising antibody responses to Wa, DS-1 and 1076 strains.
» Broader anti-P2-VP8 IgG and neutralising antibody responses than demonstrated for the monovalent vaccine.
» Responses better after 3 doses compared to 2 doses.
» Anti-P2-VP8 IgA in infants lower than anticipated.
» Significantly fewer infants vaccinated with the 90µg dose shed rotavirus compared to placebo recipients.
Considerations for Future Development Plans

» Assessment of efficacy of the stand-alone vaccine.
» Exploration of prime-boost regimens of live, oral RV vaccines and the P2-VP8 vaccine.
» Development of co-formulated vaccine, combining other EPI/UIP vaccines and P2VP8 in a single injection, including clinical assessment.
» Licensure and WHO prequalification of stand-alone and/or co-formulated vaccine for global availability.
Assessment of Efficacy of the Standalone Vaccine

» CVIA 061
A double-blind, randomized, active comparator-controlled, group-sequential, multinational trial to assess the safety and efficacy of a trivalent P2-VP8 subunit rotavirus vaccine in prevention of severe rotavirus gastroenteritis in healthy infants
CVIA 061 Study Outline

- Multinational
 - Sites in Zambia, Malawi, Ghana and India

Stage 1 Enrollment
3,500 infants
4-6 months

Interim analysis
once accrue
>30 cases
SRVGE

Futility Criteria
Not Met

Stage 2 Enrollment
4,700 infants
6-8 months

Futility Criteria
Met

Close enrollment
Crossover vaccination of TV
P2-VP8 infants
Study closure

Primary analysis
once accrue >99 cases SRVGE or all reach 2 years of age

Final analysis after all participants reach 2 years of age
Acknowledgements

RMPRU site
Anthonet Koen
Lisa Jose
Carol Taoushanis
Clinic team
Data team
Laboratory team

Shandukani site

FAM-CRU site

National Institute for Communicable Diseases, South Africa Dr Nicola Page
NIH – vaccine development

Funding from the Bill & Melinda Gates Foundation

PATH
Alan Fix
Stanley Cryz
Maureen Power
Catherine Johnson
Margaret Wecker
Allison Stanfill
Jorge Flores

EMMES
Val Brown and team
Len Dally

Cincinnati Children’s Hospital Medical Center
Monica McNeal
Nicole Meyer
Brandi Phillips

NIH – vaccine development